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POTENTIALS OF THE PROBLEM OF STEADY-STATE OSCILLATIONS
OF THE GENERALIZED ASYMMETRICAL THERMOELASTICITY OF A COSSERAT MEDIUM

V1. N. Smirnov and E. V. Frolova uDC 539.3

The potentials of a simple layer and a double layer are determined, along with
the volume potential of the problem of steady-state oscillations of the general-
ized thermoelasticity of a Cosserat medium; these potentials lead to integral
equations of the second kind for the problem.

In the investigation of laser-induced thermal strains of optical materials it is neces-
sary to treat more complex models than the classical versions in some cases. First of all,
the finiteness of the heat propagation velocity must be considered in the study of heat-re-
lease processes associated with the pulsed application of optical radiation, i.e., it is
necessary to go from classical to generalized thermomechanics [1]. Second, when the applica-
tion of such materials as polycrystalline aggregates or an optical ceramic is considered, it
is required to include not only the regular microstresses, but also couple stresses [2],
necessitating the introduction of the Cosserat continuum model. The generalized thermoelas-
ticity equations for a Cosserat medium have been derived previously [3]. An important spe-
cial case is the problem of steady-state harmonic oscillations of a homogeneous isotropic
polar-symmetrical medium. The system of equations in the complex amplitudes of the kinemat-
ic variables for an oscillation with frequency ¢ has the form

(04 @) Vu+ (p+ A —a) yv-u+ 2ay x 0 — vOy¥ + po'u 4 X = 0,
(v+eve+E+p—evv-o+ (e —4da)o+2yxu+t+Y=0,
—

- v20 — iomeg 9 — ioBgvy-u -+ w = 0,
14 o1,

One of the methods of analyzing and solving the boundary-value problems of thermoelastic-
ity, particularly for regions bounded by noncanonical surfaces, is to reduce them to integral
equations [4-6], specifically by means of potentials. It is first of all necessary in this
connection to formulate the fundamental solutions [6] of the system (1).

We consider the problem of the action of a point force vector with amplitude value a,
applied at the origin for Y = 0, w = 0. Invoking the regular solution of the homogeneous
system (1) and the Fourier integral transform for the formulation of a particular solution
of the inhomogeneous system, we obtain a solution of the system (1) subject to the Sommerfeld
radiation condition:

1=U"2, 0=0".2, 9= 0" .a,

(2)

Here the tensors U(l), (1) and the vector 8{1) have the form
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where the following notation has been introduced:
1 . -
p1= —————— {exp (i& [r]) — exp (i§ [r])},
CoME—8 i '
: (4)
= —————— {exp (in, {r]) —exp (ing 1))},
Pa el (2 — ) {exp (in, frl) p (imy )}
B 1 3 exp (i) | njexp (i, rl) }
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Here £k and nk represent the roots of the biquadratic equations
B [ 4o e __po? } p0® (I6* — 4a) _
vt+tep+a v+e  pto (v+e) (u+a)
(5)
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In the case of a point couple with amplitude value a, applied at the origin for X = 0,
w = 0, the solution of the system (1) subject to the radiation condition can be written

u=U%.3, 0=0%.a, ¢=0, (6)
where the tensors U(z), 2(2) have the form
U® = — ¢ x Epy,
Mt @t
= : {(e—v—ﬁ) VVV'ps -+
4n(v-+e) (27 +B) : (7)
R Ea g L. SR |
+ Pt VVPs +‘4n(v+8) Ve + o P
Here, in addition to (4) and (5), we have introduced the notation
s — 2N { exp (& Is]) + exp (i€, |r) + exp (i&]r}) }
o l@-8E-8 e&-HE-8 e-He—-9/ ®
Eg _ [o? — 4a
’ v+ B

Finally, under the action of a point heat-release source at the origin with amplitude
value ay the solution of equations (1) subject to the radiation condition has the form

u=U%a, 0=0 §=0909, (9)
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where

v{l -+ foT,
@) (‘ - 07Ty -
4otk (2p -+ 2)
4kO, : 2 + Ao

Consequently, if a point force, a point couple, and a point heat-release source act
at the origin, the system (1) has the following solution regular everywhere except at the

origin:
uh) =y a4 U g, 4 gUP
o) = Q@1 a4+ 0% .a,
8 = el -a %—a(ﬂ”

(11)

We denote the singular part of a tensor or vector by the subscript s. It is readily
verified that the singular part of the solution (11) does not depend on ¢:

vl = 3p+Ata E Wt rA—a
s 8rir] (2p + 1) (n + @) 8 |rPP (2w + A) (0 + @)
o) - _ SrtBre g y+p—e
alr] 2y +B) (v + #) 8 |r? (2y + B) (v +2)
(3) 1 (12)
- 47k®, Ir]

U =0, 9”=0, U =0, 6" =0.
Apart from notational differences, equations (12) coincide with the expressions given
in [6] for the singular parts of the fundamental solutions for the couple elasticity.

We now introduce the tensors é(l) @(2) ?(1) y(2 ) the vectors &3 } P(l), and the
scalar P(3), which are related to U(1), U(z) U(3) o2 ) ot2), o), 6(3) by the expressions

o’v

O = (u+a)yn- yUN + (w—a) yn-UD + g U 4 == (1 4 iovy) nU?

@2 = (y + &) n-yU® 4 (p—e) yn-UP + pny - UP + 2anx U,

O —n.gU®, W = (u-t o) n-yQ" 4 (p—a) yn-2" +iny-27, )
¥ = (y + &) n-yQ@? + (y—¢) yn- 27 4 pny- 0¥ + 2anx 2P
PN = (44 o) n-y®D + (n— ) yn-8 + Any. 0"
_{_g%v_ (1 + oty 18, P® = n.y@™
It can be directly verified that
u® = b;- @ 4 b, 0P + 5,0, @@ = b W 4 b, ¥ (14)

89 = b, PV 5,P%

represents the solution of the homogeneous system (1) everywhere except at the origin for
any constants by, b,, and by. The solutions (11) and (14) can be used to find expressions

for the potentials. If we consider the domain V bounded by a closed Lyapunov surface S,
we can introduce the volume potential

W) = | (U R)-a, () + U R)-2, 1) + a5 ) U (R} 4V (),
v

ol (r) = | {27 ®)-a, () + % (R)-a, (0} AV (1), (15)

v
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8 (1) = [ {0 (R)-a, (1) -+ 2, ) O (R)} 4V (1), (13)

14

where the following notation is introduced:
R? = (r—ro)}, =018 [,= Xeus, (16)

and the differential operations in the integrands are naturally taken with respect to the
variables xk. Moreover, we introduce the potentials of a simple layer

i) = [ U -2+ U ®)a,(0) + 0 () U R} dS ),
S
o) = | (&7 R a () + 2 R)-a, (10} dS (), (17)
N
8 () = [ {6 (R)-ay(r) + 0o (r) 6 (R)} dS (1)
S

and a double layer

ali i (rg) = [ {by (1)@ (R) + by (1) @7 R) + b5 (1) @ (R)} dS (1),
s

o' () = {0y ()W R) + by () W (R) dS (1), (18)
s

8" (o) = { {by (1P R) + b5 (1) PV (R} dS ().
S

Inasmuch as the singular parts of the potentials (15), (17), and (18), apart from nota-
tional differences, coincide with the singular parts of previously investigated potentials
[6], the potentials (15), (17), (18) and their normal derivatives on the surface have the
same continuity properties or type of discontinuity as their classical analogs. This fact
permits them to be used to derive integral equations of the second kind by exact analogy
with the previously investigated potentials.

It is important to note that the classical thermoelastic potentials of a Cosserat medi-
um can be obtained by setting 1, = 0 everywhere, although, of course, it would be possible
to consider the classical analog of the system (1) from the outset in order to obtain the
indicated potentials, and then to go over to Egs. (15), (17), and (18) by the correspondence
principle [7].

As an example, we consider the first outer problem for the system of equations (1),

i.e., we assume that the elastic medium occupies a volume V bounded by a closed Lyapunov
surface S, on which the following boundary conditions are specified:

uts - (]J(I‘O), mis = '\IJ (1‘0), 'ﬁ'ls = g(ro)- (19)

The solution of such a problem can be sought in the form of the sum of the potentials
(15) and (18). Since the double-layer potential (18) behaves near the boundary in the same
way as the corresponding static potential [6], the problem is reducible to the system of
integral equations

by + [ (b ()-0 ®) + by ()0 R) + by (r) O R)} dS (1) =

N

= 0(r0) — [ U R)-a,() + U ®)-2, (1) + a5 (1) U (R)} @V (1),

14

— by (r)) + { (b (1) ¥ (R) + b, (1)- ¥ (R)} dS (r) =

s (20)
= (r)— [ {27 ®)-a, (1) 4- 97 ®)-a,()) dV (1),

v

—by (o) -+ { {by ()P (R) + by (r) PP R dS (1) = g (ro) — | {87 (R)-a, (1) + 23 (r) 8 (R)} 4V ().
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Singular integral equations can also be obtained for other boundary-value problems.

All of these systems of integral equations are analogous to those discussed in [6] as part
of a study of other branches of the theory of elasticity. Consequently, the validity of
the Fredholm alternative hypothesis can be proved for them, and previously developed meth-
ods of solution [8, 9] can be used.

NOTATION

u, complex amplitude of the displacement vector; w, complex amplitude of the microrota-

tion vector; 9, complex amplitude of the relative deviation of the absolute temperature ©
from the initial value ©4; u, A, o, v, €, B, Vv, m, constants characterizing the elastic and
thermophysical properties of the material; o, oscillation frequency; t,, time constant char-
acterizing the heat propagation velocity; p, density of the material; I, quantity character-
izing the inertial properties of the material in microrotations; k, thermal conductivity;

X, complex amplitude of the external body-force vector; Y, complex amplitude of the external
body couples; w, complex amplitude of the heat-release density; E, unit tensor; r, radius
vector of point with coordinates xn; ry, radius vector of point with coordinates X¢p; en,
unit vectors of orthogonal coordinate system.
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